Analysis of A Xi-minus Hyperon Inflight Decay Event

Khin Than Tint¹, Khaing Thidar Myint², K. Nakazawa³

Abstract

In this research, a Xi-minus hyperon inflight decay event which was found in nuclear emulsion of KEK E373 experiment had been analyzed. The kinetic energy and momentum of Xi-minus hyperon that was the entering point into nuclear emulsion were estimated by using the range and angle information of Xi-minus and its decay daughters, π^{-} and Λ . The obtained values of kinetic energy and momentum were 56.69 MeV and 391.18 MeV/c, respectively.

Key Words: Xi-minus hyperon, inflight decay, nuclear emulsion

Introduction

The Xi-minus (Ξ) hyperons were produced via quasi free 'p' (K⁻, K⁺) Ξ ⁻ reaction in a diamond target with 1.66 GeV/c K⁻ meson beam in KEK E-373 Experiment. Emitted Ξ^{-} hyperons were entered into nuclear emulsion stack which was situated at the downstream of diamond target. One stack of emulsion was composed of one thin plate (plate #1) with thickness ~ 400 μ m and 10 or 11 thick plates with thickness ~ 1050 μ m (plate #2 to #11 or #12). The area of emulsion plates was 24.5×25.0 cm². Total 100 stacks (module) were used in E373 experiment. Some Ξ^{-} hyperons were brought to rest in nuclear emulsion and captured by emulsion nuclei and could found compound nucleus with strangeness quantum number S = -2. At the decay of the compound nucleus, a double Λ hypernuleus, twin single Λ hypernucleus, single Λ hypernucleus and H di baryon (if exist) were emitted. On the other hand, some Ξ^{-} hyperon inflight decayed into π^{-} meson and Λ hyperon which can be seen thin track (π^{-}) at the end of straight thick track (Ξ) in nuclear emulsion. Track of A hyperon cannot be seen in nuclear emulsion because it has no charge. A schematic view of Ξ^{-} hyperon inflight decay event and around the target region of E 373 experiment is shown in Figure (1). We chose an event in which π meson track was stopped at Scintillating Micro Fiber Block (SciFi-Block) detector. This event was found in plate #7 of Module #65.We measured the range of π^{-} meson track not only in nuclear emulsion (pl #7 to #12) but also in downstream of SciFi-Block. Moreover, the range of Ξ hyperon track from plate #7 to plate #1 was measured. We obtained the angle between the Ξ^{-} hyperon track and π^{-} meson track. The kinetic energy and momentum of Ξ hyperon's decay point was obtained from the range, kinetic energies of its decay daughter and conservation laws of energy and momentum. Finally, kinetic energy and momentum of Ξ^{-} hyperon at its entering point into nuclear emulsion (pl#1) was estimated from measured range data (from pl #7 to pl#1) and its decay point data.

¹ Associate Professor, Dr, Department of Physics, University of Mandalay

² MSc student, Department of Physics, University of Mandalay

³ Senior Professor, Dr, Department of Physics, Gifu University, Japan.

Event Description, Range Measurements and Event Reconstruction

Event Description of A Xi-minus Hyperon Inflight Decay in Nuclear Emulsion

The photograph and schematic drawing of Ξ^- hyperon inflight decay event are shown in Figure (2). The Ξ^- hyperon entered and then inflight decayed at point A, from which π^- meson and invisible lambda (A) hyperon were emitted. π^- meson track was left the emulsion stack and stopped in SciFi-block detector which was placed downstream of the emulsion chamber. The SciFi image for stopped π^- meson track in his event is shown in Figure (3). Four black sports in D- Block image express the stopped π^- .

Figure (3) The SciFi image for stopped π^- meson track

Range and Angle Measurement of Xi-minus Hyperon and π -Meson

We measured the range of Ξ hyperon (pl #7 to pl #1) and π^- meson (pl #7 to pl #12) tracks in emulsion by using the microscope system. The range of the track, R can be obtained from measured x, y, z coordinates by using the following relation.

$$R = \sqrt{\Delta x^2 + \Delta y^2 + \Delta z^2} . S^2 \tag{1}$$

Where, Δx , Δy and Δz were the length of the track in the x, y and z direction respectively. The S was the shrinkage factor. We also obtained the angle between Ξ^- hyperon and π^- meson tracks by using equation (2).

$$\vec{\Xi}^{-} \cdot \vec{\pi}^{-} = \left| \vec{\Xi}^{-} \right| \cdot \left| \vec{\pi}^{-} \right| \cos \theta \tag{2}$$

Since the π^- meson track was left from the emulsion plate and stopped in downstream of SciFi-Block, we needed to obtain range in SciFi and transform into corresponding range in

nuclear emulsion. The range of the π^- meson track was obtained from the size of D-Block in u, v, z directions (120 mm× 120 mm× 80 mm). The corresponding kinetic energy was obtained by using the range energy relation equation in SciFi-Block detector.

$$\mathbf{R} = \mathbf{a} \times T^{\mathbf{b}}$$

(3)

Where a and b were the fitting parameter. The values of "a" and "b" are, 0.107 and 1.62, respectively. We considered again that the range in nuclear emulsion for that energy value of π^{-} . Because SciFi-Block and nuclear emulsion were different media.

Event Reconstruction

The Ξ^- hyperon was identified from event reconstruction of its decay at point A. We assumed that Ξ^- hyperon inflight decayed into a π^- meson and another neutral particle, a Λ hyperon. We considered the kinematic of decay event where the direction of Ξ^- hyperon as x-axis is shown in the following Figure (4).

Figure (4) The kinematic of decay event

Firstly, we considered the decay point of Ξ^{-} hyperon, point A in Figure (4). Invariant mass of Ξ^{-} hyperon was obtained from the information of its decay daughters, π^{-} meson and Λ hyperon, by using the following Equation (3).

$$M_{\Xi}^{2} = \left(\sqrt{M_{\pi}^{2} + P_{\pi}^{2}} + \sqrt{M_{\Lambda}^{2} + P_{\Lambda}^{2}}\right)^{2} - (P_{\pi} - \cos\theta + P_{\Lambda}\cos\phi)^{2}$$
(4)

The values of ϕ were obtained from momentum conservation relation, $P_{\pi} \sin \theta = P_{\Lambda} \sin \phi$ by inserting the various value of P_{Λ} . And then, we deduced the momentum of Ξ^{-} hyperon at point A from the following momentum conservation relation, $P_{\Xi^{-}} = P_{\pi^{-}} \cos \theta + P_{\Lambda} \cos \phi$ (5)

The value of momentum and kinetic energy for Ξ hyperon at point A were obtained. Then, we calculated the corresponding range in nuclear emulsion by using energy-range program. The total range of Ξ hyperon was obtained from estimated range at point A plus measured range from pl #7 to pl #1. Finally, we calculated the kinetic energy and momentum of Ξ hyperon at plate#1 from its total range by using range- energy program.

Results and Discussions

Result of Range Measurement of Ξ^{-} hyperon and π^{-} meson in Nuclear Emulsion

We measured the range of Ξ^- hyperon and π^- meson in decay event of #9501-3 which was found in nuclear emulsion plate of #7, Mod # 65 of KEK E373 experiment by using the microscope system. The range of Ξ^- hyperon from Pl#7 to Pl#1 was measured. Similarly, the range of π^- meson from Pl#7 to Pl # 12 was measured. The range of each track was obtained from measured coordinates by using the Equation (1). The range of Ξ^- hyperon in nuclear emulsion was 6700 µm and that of π^- meson was 18700 µm.

Result for Estimation of Range and Kinetic Energy of π^- meson in Down Stream of SciFi Block

 π meson track was left the emulsion stack and stopped in downstream block (D-Block) of Scintillation Microfiber block (SciFi-block) detector. The ranges of tracks in SciFi-Blocks can be obtained by using the size of D-Block in u, v, z directions, 120 mm × 120 mm × 80 mm. The range of the π meson track which was emitted from decay event in D-Block was 21.8 mm (21800 µm). The corresponding kinetic energy was obtained by using the range energy relation equation, Equation (3), in SciFi-Block detector. The kinetic energy of π meson track would be 26.7 MeV.

Result for Estimation of Total Range and Kinetic Energy of π^{-} meson

Since the kinetic energy of π^- meson track in Sci-Fi block was 26.7 MeV. We considered that the range of π^- meson track in nuclear emulsion if it has 26.7 MeV, kinetic energy. The corresponding range in nuclear emulsion was obtained by using the energy-range program for nuclear emulsion which was based on Barks's literature. The range obtained by using range energy relation in nuclear emulsion was 13284.30 µm. The total range of π^- meson track which included range in emulsion as well as in Sci-Fi block was 31984 µm. Its kinetic energy was 45. 25 MeV. The symmetrized range and kinetic energy for π^- meson were expressed in Table 1.

Range in Emulsion (µm) (pl# 7 ~ 12)	Range in Sci-Fi Block (µm)	Kinetic Energy in Sci-Fi Block (MeV)	Corresponding Range in Emulsion (µm)	Total Range of π meson (μm)	Total Kinetic Energy of π ⁻ meson (MeV)
18700	21800	26.7	13284.3	31984.3	45.3

Table 1. The symmetrized range and kinetic energy for π^{-} meson

Result for Estimation of Momentum of Λ hyperon

Decay event was reconstructed at Ξ^- hyperon decay point by using the conservation laws of energy and momentum. We imagined that Ξ^- hyperon was decay into π^- meson and Λ hyperon at point A. The invariant mass of Ξ^- hyperon was obtained by using Equation (4) with the information of decay daughters. The value of ϕ were deduced from momentum conservation relation, $P_{\pi} \sin\theta = P_{\Lambda} \sin\phi$ by inserting the various value of momentum of lambda hyperon P_{Λ} which was from minimum value 113.6 MeV/c to 350.6 MeV/c. The various value of mass of Ξ^- hyperon obtained from corresponding momentum of Λ hyperon, as shown in Figure (5). The invariant mass of Ξ^- hyperon, $M_{\Xi^-} = 1321.31 \text{MeV/c}^2$, was obtained at momentum of Λ hyperon, $P_{\Lambda} = 330.10 \text{ MeV/c}$. The kinetic energy and momentum of π^- meson, Λ hyperon and Ξ^- hyperon at point Λ are summarized in Table 2.

Figure (5) Invariance mass of Ξ^- hyperon and momentum of Λ hyperon

Table 2. The kinetic energy an	d momentum of π n	neson, Λ hyperon and Ξ^{-}	hyperon at point A
--------------------------------	-----------------------	--	--------------------

π^-		Λ		Ξ-	
Kinetic energy (MeV)	Momentum (MeV)	Kinetic energy (MeV)	Momentum (MeV/c)	Kinetic energy (MeV)	Momentum (MeV)
45.3	121.155	48.8	330.10	27.3	268.5

Result for Determination of Kinetic Energy and Momentum of Ξ^- hyperon at Plate#1

The momentum and kinetic energy of Ξ^{-} hyperon at point A were obtained by using the momentum conservation and energy-momentum relations. Its values have to be 68.5 MeV/c and 27.3 MeV, respectively. The range of Ξ^{-} hyperon obtained from kinetic energy at point A was 2578.73 µm. The range of Ξ^{-} hyperon from point A at plate #7 to plate #1 was 6700 µm. The total range of Ξ^{-} hyperon was 9278.73µm. The kinetic energy and momentum of Ξ^{-} hyperon at plate#1 were 56.7 MeV and 391.2 MeV/c respectively. The symmetrized range, kinetic energy and momentum of Ξ^{-} hyperon were expressed in Table 3.

Kinetic Energy of <i>E</i> ⁻ at point A (MeV)	Correspond ing Range (µm)	Range of Ξ ⁻ Pl#1 to Pl#7 (μm)	Total Range of Ξ ⁻ hyperon (μm)	Kinetic Energy of <i>E</i> ⁻ hyperon at Pl#1 (MeV)	Momentum of Ξ ⁻ hyperon at Pl#1 (MeV/c)
27.3	2578.73	6700	9278.73	56.7	391.2

Table 3. Range, kinetic energy and momentum of Ξ^{-} hyperon at point A and at Pl#1

Discussions

The event reconstruction in nuclear emulsion is based on the conservation laws of energy and momentum. A Ξ^- hyperon decayed into a charged particle and some neutral one at point A. The emitted particle from event left the emulsion stack and stopped in downstream of SciFi-Block (D-block). That particle was identified as a π^- meson because of the mean brightness value of the track. We measured the range of tracks in Ξ^- hyperon decay event. We obtained the angle between the Ξ^- hyperon and π^- meson. The kinetic energy and momentum of π^- meson was obtained from the total range which included range in emulsion plus corresponding range in emulsion changed from range in Sci-Fi block by using the range energy relation. And then, we also calculated he invariant mass of Ξ^{-} hyperon by using the various value of P_{Λ} and ϕ based on momentum conservation relation. The value of ϕ was obtained by using this equation $P_{\pi} \sin \theta = P_{\Lambda} \sin \phi$ and inserting the various value of P_{Λ} . Then, we estimated momentum and kinetic energy of Ξ^{-} hyperon at point A. The momentum and the kinetic energy were 2 68.5 MeV/c and 27.3 MeV, respectively. The corresponding range in nuclear emulsion, 2578.73 μ m, was obtained by using the energy-range program. The measured range of Ξ hyperon form plate#1 to #7 was 6700 μ m by using microscope system. Then, total range of Ξ^{-} hyperon was 9278.73 μ m. Finally, the kinetic energy and momentum of Ξ^{-} hyperon at plate#1 were 56.7 MeV and momentum was 391.2 MeV/c respectively.

Conclusion

We have analyzed one of the decay events in nuclear emulsion of E373 experiment. The decay event is the cascade decay of, $\Xi^- \rightarrow \pi^- + \Lambda$; $\Lambda \rightarrow p + \pi^-$. However, $\Xi^- \rightarrow \pi^- + \Lambda$ decay mode can be detected in nuclear emulsion of E373 experiment. We measured the range of π^- meson not only in emulsion but also in SciFi-Block detector. We obtained the kinetic energy and momentum of π^- meson from its range. Moreover, the momentum of Λ hyperon was estimated. In our analysis, the momentum of Ξ hyperon at pl#1 was estimated by using the information of its decay daughter, π^- and Λ , based on the conservation laws of energy and momentum.

Acknowledgements

Our gratitude to Professor Dr Lei Lei Win, Head of Department of Physics, , Professor Dr Kalyar Thwe, Professor Dr Nyein Wint Lwin, Professor Dr Nay Win Oo, Department of Physics, University of Mandalay for their kind permission to carry out this research work.

References

H. Takahashi, Doctor Thesis, Kyoto University (2003).
Nicholas T, Measurement and Detection of Radiation, Second Edition, (1979).
W. H. Barkas. et al., Nuov. Cim. 8 (1958).
K. T. D. Myint, Master Thesis, University of Mandalay, (2009).